Bostadspriserna och läget

- tillämpning av den monocentriska stadsmodellen

Patrik Larsson
Bostadspriserna och läget
- tillämpning av den monocentriska stadsmodellen

The housing prices and location
- application of the monocentric city model

Examensarbete utfört av/Master of Science Thesis by:
Patrik Larssson, Civilingenjörsutbildning i Lantmäteri, Lunds Tekniska Högskola

Handledare/Supervisor:
Ingemar Bengtsson, universitetslektor, Fastighetsvetenskap, Lunds Tekniska Högskola

Examinator/Examiner:
Åsa Hansson, universitetslektor, Fastighetsvetenskap, Lunds Tekniska Högskola

Opponent/Opponent:
Karl Falck, Civilingenjörsutbildning i Lantmäteri, Lunds Tekniska Högskola

Nyckelord:
Fastighetsmarknad, Bostadspriser, Monocentrisk, Stad, CBD, Hedonisk prissättningssmodell, Prisbildning

Keywords:
Property market, Housing prices, Monocentric, City, CBD, Hedonic price model, Pricing
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
Abstract

Forecasts and analysis on real estate values and house prices are an ever-present problem for several different players. Often there is debate about the values of housing prices or housing bubbles in the Swedish cities. The difficulty with the valuation of housing, compared with other products, is their unique location. No housing is another comparable, and because of this there is no certain market value. The question is; what can explain the high housing prices in cities?

This work is based on a theory called the classic monocentric city model, which is a theory based on the city's original structures. The city has a center where all residents daily have to transport themselves to work so that they can meet their costs for housing and other consumption needs. At the urban boundary of the city, the housing prices consist of land values in current use, ie agriculture or forestry, and construction cost of the residence. Those living at the urban boundary must pay to transport themself into the center, not just the actual cost but also the opportunity cost of time it takes. Citizens who settle in the center will then be prepared to pay more for housing because they do not have the transportation cost. Prices in the city thus contain a location price which increases the closer to the center the residence is located.

This work purposes to investigate whether the monocentric city model can be applied in Swedish towns and regions. It also aims to examine how the price structure looks like in Swedish cities, how the housing prices relate to the distance to the center of the city. Areas in Sweden are selected to carry out examinations and applying the model. The areas are Stor-Malmö, composed of 11 municipalities, and the cities Malmö and Lund.

A literature study is implemented for the purposes, which includes the theory of the monocentric city model, and various theories of valuation and pricing of homes. Based on the theories, hypotheses are set up that will be verified or shown to be false. The analysis is based on these hypotheses. The hedonic pricing model is used in the analysis. The regression analysis performed on the data sets consist of data from about 70% of the sales from the Swedish accommodation form bostadsrätt in the three areas, from the time 2008 to October 2011.

The results show that it is difficult to apply the monocentric city model. There are many factors that have affected the housing prices during the studied period, and therefore the hypotheses can neither be verified nor rejected. In the studied areas, there are several factors that affect the prices and also the regions are not fully monocentric. Despite this, the results show that there is a strong correlation between housing prices in the areas and a defined center in each area. The distance to the center explains much of the housing prices. The result should be possible to apply to other areas in Sweden.

In Lund, the location price of the property has increased in all of the studied years. In 2008 a housing cost 301 SEK more for every meter closer to the center the housing
was located. As center of Lund, Stortorget is defined. In 2011 the price had risen to 358 SEK per meter. This means that a "normal housing" at 71 m² with two rooms and a monthly fee of 3618 SEK if it is located at the center of Lund and about 700 000 SEK if it is located at the urban boundary of Lund, 4000 meters from the center. In Malmö, the location price is not as high, but it has, as in Lund, increased each year, from 144 SEK per meter 2008 to 190 SEK per meter of 2011. As center of Malmö, Stortorget is defined.

As the distance, several different measures can be used. When applying the monocentric model to the region Stor-Malmö, it is shown that the time to transport to the center is a better measure than a straight line to the center. The location has increased from about 36 000 SEK per minute in 2008 to about 42 000 SEK in 2011. As the center of Stor-Malmö, Stortorget is defined.

Although the distance to the center of a city can explain much of the housing prices, there are several other location factors affecting the price. The extent to which the distance to the center can be used as location variable will therefore depend on the size of the area and the wide of variations in different parts of the area.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Sammanfattning

Att göra bra prognoser och analyser av fastighetsvärden och bostadspriser är ständigt aktuella problem för flera olika aktörer. Ofta talas det om övervärderingar av bostadspriser eller bostadsbubblor i svenska städer. Svårigheten med värdering av bostäder, jämfört med andra varor, beror på deras unika läge. Ingen bostad är en annan lik och det finns därför inget säkert marknadsvärde. Frågan är; vad kan förklara de höga bostadspriserna i städerna?

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

I Lund har priset för bostadens läge ökat samtliga studerade år. År 2008 kostade en bostad 301 kr mer för varje meter närmre centrum bostaden var belägen. Som centrum i Lund används Stortorget. År 2011 hade priset stigit till 358 kr per meter. Detta betyder att en ”normalbostad” på 71 m² med 2 rum och en månadsavgift på 3618 kr, år 2011 kostade ca 2 100 000 kr om den är belägen vid Lunds centrum och ca 700 000 om den är belägen vid Lunds utkant, 4 000 meter från centrum. I Malmö är priset för läget inte lika högt, men det har liksom i Lund ökat samtliga år, från 144 kr per meter 2008 till 190 kr per meter 2011. Som centrum används Stortorget.

Även om avståndet till centrum i en stad kan förklara en stor del av bostadspriserna så finns det flera andra lägesfaktorer som inverkar på priset. I vilken utsträckning avståndet till centrum kan användas som lägesvariabel beror därför på storleken på området och hur stora skillnader det är på olika delar av området.
Förord

Med detta examensarbete avslutar jag min fem år långa utbildning vid Lunds Tekniska Högskola och tar min examen som Civilingenjör inom Lantmäteri. Examensarbetet har genomförts under vintern 2011/2012. Det har varit en händelserik period där jag parallellt med arbetet bland annat har jobbat i ett spännande projekt, där jag har fått möjligheten att tillämpa en del av den kunskap jag har fått under min utbildning.

Jag vill passa på och tacka all personal på avdelningen för Fastighetsvetenskap som gjort studierna både intressanta och lärorika. Jag vill rikta ett speciellt tack till min handledare Ingemar Bengtsson som gett mig inspiration och idéer till detta examensarbete. Jag vill även tacka Svensk Mäklarstatistik som tillhandahållit nödvändig data.

Sist men inte minst vill jag tacka mina vänner, min familj och min sambo, Elin. Ni har gjort studietiden så mycket enklare och roligare!

Lund, februari 2012

Patrik Larsson
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Innehållsförteckning

1 Inledning .. 13
 1.1 Bakgrund .. 13
 1.2 Problem .. 13
 1.3 Syfte .. 14
 1.4 Avränsningar och definitioner 15
 1.5 Metod ... 15
 1.6 Disposition ... 15

2 Metod ... 17
 2.1 Metodval .. 17
 2.2 Hypotesprövning .. 17
 2.2.1 Hypotes 1 Befolkningsökning med konstant densitet 18
 2.2.2 Hypotes 2 Befolkningsökning med konstant area 18
 2.2.3 Hypotes 3 Storlek på staden .. 18
 2.2.4 Hypotes 4 Minskade transportkostnader 18
 2.3 Data ... 18
 2.4 Genomförande och tillvägagångssätt 19

3 Den monocentriska stadsmodellen..................... 21
 3.1 Läget och CBD .. 21
 3.2 Transportkostnad och bostadspris 22
 3.3 Effekter från den monocentriska stadsmodellen 24
 3.3.1 Befolkningsförändring med konstant densitet 24
 3.3.2 Befolkningsförändring med konstant area 26
 3.3.3 Förändring av transportkostnad .. 27
 3.3.4 Inkomstförändring ... 29

4 Värderingsteori .. 31
 4.1 Värdeori .. 31
 4.2 Marknadsvärde ... 31
 4.3 Hedonisk prissättningsmodell 32
 4.4 Prisbildning och prispåverkande faktorer 34
 4.5 Tidigare studier .. 36

5 Malmöregionen och data 39
 5.1 Beskrivning av området 39
 5.1.1 Malmö .. 40
 5.1.2 Lund .. 43
 5.1.3 MalmöLundregionen ... 45
 5.1.4 Data för Stor-Malmö .. 46
 5.2 Datamaterial över bostadspriser 48

6 Analys .. 51
 6.1 Val av CBD ... 51
 6.2 Avståndsmätning ... 52
 6.2.1 Tidsavstånd .. 53
 6.3 Den hedoniska prissättningsmodellen 55
 6.3.1 Lägesvariabel ... 56
 6.4 Basmodeller ... 57
 6.5 Hyresgradient och prisstruktur 64
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

6.6 Prisförändring ... 67
 6.6.1 Lund .. 67
 6.6.2 Malmö ... 70
 6.6.3 Stor-Malmö ... 73
 6.6.4 Inkomstförändring .. 74
6.7 Stadens storlek .. 75
6.8 Minskade transportkostnader .. 76
7 Diskussion och slutsats ... 79
8 Förslag till framtida forskning ... 83
Litteraturförteckning ... 85
Figurlista ... 89
1 Inledning

1.1 Bakgrund

Fastighetsvärdering och olika former av fastighetsanalyser har alltid varit viktiga områden inom fastighetsbranschen. Dessa är metoder som används så gott som dagligen av flera olika aktörer. Som de flesta känner till så värderar mäklare alla sina objekt innan de marknadsförs till försäljning. Fastighetsbolag gör olika former av marknadsanalyser för att bedöma var det är mest lönsamt att bygga. Bankerna värderar fastigheterna innan de kan bedöma hur stor säkerhet de har vid deras kreditgivning. Dessutom finns det kommuner som är intresserade av att veta vad som skulle hända med fastighetspriserna om de planlägger ett nytt område eller ny infrastruktur i en stad. Dessa är bara några av alla de aktörer som ständigt försöker värdera fastigheter och prognostisera fastighetspriser.

Idag är prognostisering av fastighetsvärden och bostadspriser kanske mer aktuellt än någonsin. Det var inte länge sedan det utbröt en stor finanskris över stora delar av världen, där sjunkande fastighetsvärden spelade en viktig roll. Flera banker fick se enorma kreditförluster och var nära konkurs. Effekterna av krisen finns fortfarande kvar på flera håll och det råder en stor oro både på finans- och fastighetsmarknaden. Till exempel är många oroliga för att det råder en bostadsbubbla i Sverige.

1.2 Problem

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

1.3 Syfte

Syftet är dessutom att ta reda på hur bostadsprissstrukturen ser ut i en stad. Hur ser sambandet ut mellan bostadspriserna i den centrala delen av staden och avståndet till utkanten av staden?

Syftet är inte att ifrågasätta huruvida den monocentriska stadsmodellen verkligen stämmer, utan att pröva i vilken utsträckning den går att använda i svenska städer och områden, alltså om dessa områden uppfyller villkoren för modellen.
Syftet leder således fram till rapportens konkreta studie: ”Att undersöka om den monocentriska stadsmodellen går att applicera på Malmö, Lund och Stor-Malmö. Hur förhåller sig bostadspriserna till avståndet till centrum i respektive område?”

1.4 Avgränsningar och definitioner

Som transportkostnad kommer avståndet och snabbaste transportmedel till centrum betraktas. Att kartlägga exakta kostnader och tider från varje punk i staden skulle vara för omfattande.

1.5 Metod

1.6 Disposition

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

2 Metod

2.1 Metodval

2.2 Hypotesprövning

Syftet med hypotesprövningen är att pröva i vilken utsträckning den monocentriska stadsmodellen går att applicera på områden inom Malmöregionen. Hypoteserna prövas både på enskilda städer inom regionen och på hela regionen som stort. Modellen över staden appliceras då på hela regionen där ett centrum definieras.

Varje hypotes består av ett axiom från modellen. Om dessa inte stämmer ska inte modellen ifrågasättas, istället konstateras att områdena inte uppfyller villkoren för modellen.
2.2.1 Hypotes 1 Befolkningsökning med konstant densitet

Enligt modellen leder en befolkningsökning i staden till att bostadspriserna i absoluta tal ökar lika mycket i hela staden om densiteten av bostäder och transportkostnader är konstant. Detta leder fram till Hypotesen; *Vid lika densitet av bostäder och lika transportkostnader kommer en befolkningsökning leda till en absolut bostadsprisökning som är samma i hela staden*. Denna hypotes prövas genom att jämföra bostadsprisökningen mellan olika år i olika delar av staden. Dessutom undersöks det huruvida transportkostnaderna eller densiteten har förändrats.

2.2.2 Hypotes 2 Befolkningsökning med konstant area

Om densiteten skulle förändras vid en befolkningsökning, och istället areaen är konstant, då kommer den procentuella ökningen av bostadspriserna vara samma i hela staden. Därför prövas hypotesen; *Vid samma storlek på staden leder en befolkningsökning till procentuellt sätt lika bostadsprisökningar*. Hypotesen prövas genom att jämföra bostadsprisökningen mellan olika år i olika delar av staden. Dessutom undersöks det huruvida areaen har varit konstant.

2.2.3 Hypotes 3 Storlek på staden

Enligt modellen gäller följande hypotes; *Om allt annat lika kommer en till ytan större stad ha högre genomsnittliga bostadspriser*. Denna hypotes kommer att prövas genom att jämföra areaen med genomsnittsbostadspriserna i olika tätorter inom Stor-Malmö.

2.2.4 Hypotes 4 Minskade transportkostnader

Enligt modellen gäller hypotesen; *Minskade transportkostnader med konstant population och inkomst, kommer minska bostadspriserna i stadens centrum*. Prövningen sker genom att försöka hitta någon stad eller tätort inom regionen där transportkostnader att ta sig in till centrum av regionen har minskat. Bostadspriserna jämförs innan och efter de minskade transportkostnaderna.

2.3 Data

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Data behövs även för antal invånare inom städerna och tätorterna inom regionen samt hur dessa har förändrats. Dessutom behövs data över bostadsdensitet och städernas area för varje år. Dessa data finns dock endast i femårsperioder varför endast en uppskattad årsförändring kan göras.

De data som finns att tillgå bedöms vara tillräckligt omfattande för att ge representativa resultat i analyserna. Det är dock önskvärt att det hade funnits jämförbara data längre tillbaka i tiden. Det kan bli svårt att se en tydlig utveckling i städernas förändring vad avser yta, befolkning och transportkostnader med mera.

2.4 Genomförande och tillvägagångssätt

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
3 Den monocentriska stadsmodellen

Den monocentriska stadsmodellen som belyses i denna rapport är en enkel version som grundar sig på att det endast finns ett markanvändningssätt i staden, nämligen bostad. När jag nedan hänvisar till modellen eller den monocentriska staden så syftar jag på denna enkla monocentriska stadsmodell.

3.1 Läget och CBD

CBD står för central business district. Termen skapades av urban-sociologen Ernest Burgess (1925). Han definierade termen som den region med den högsta koncentration av byggnader och den största ekonomiska aktiviteten i en stad. Han menar att CBD är det kommersiella centrum där hyrorna är högst. (Burgess, 1925)

I de flesta städer är det relativt enkelt att definiera CBD. De finns ofta en plats med en gågata med flera butiker och där många människor vistas. Det finns ofta en
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

centralstation och dessutom är många kontor belägna i området. Oftast är husen som högst och tättast i CBD. Att CBD ser ut så beror på att många människor vill bo där, eftersom de har nära till arbete och service.

3.2 Transportkostnad och bostadspris

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Figur 1 Sektion över bostadspriset i den monocentriska staden (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 68).

Figur 1 ovan visar hur bostadspriset ökar när bostaden ligger närmre centrum. Figuren visar även att all prisökning beror på lägeshyran, alltså kostnaden för att transportera sig till centrum. Linjens lutning, hyresgradient, visar hur stor transportkostnaden är per avstånd och yta. Hyresgradienten visar alltså hur mycket bostadspriset ökar på en viss sträcka för en given yta. I centrum har lägeshyran följande samband:
Lägeshyran = hyresgradienten * radien
Hyresgradienten = transportkostnad per capita * densiteten
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

(Geltner, Miller, Clayton, & Eichholtz, 2007, s. 67)

O’Sullivan (2007, s. 114) beskriver fenomenet ovan som det första axiomet inom urban ekonomi. En förflyttning mot eller ifrån CBD, eller anställningsområdet som han kallar det, ger följande samband:

\[\Delta P \cdot h + \Delta x \cdot t = 0 \]

Förändringen i bostadspris (\(\Delta P \)) gårng konsumtionen av bostad (\(h \)) och distansförflyttningen (\(\Delta x \)) gångar transportkostnaden (\(t \)) är tillsammans lika med noll. (O’Sullivan, 2007, s. 114)

3.3 Effekter från den monocentriska stadsmodellen

3.3.1 Befolkningsförändring med konstant densitet

Om befolkningen i den monocentriska staden ökar kan staden utvecklas på två olika sätt. De nya bostäderna kan byggas vid utkanten av staden så att densiteten blir oförändrad, alltså befolkning per yta. Bostäderna skulle också kunna byggas inne i staden så att arean är konstant och densiteten ökar. Effekten av det första alternativet blir att arean ökar. Vid antagandet om att transportkostnaden per sträcka är samma som tidigare så kommer bostadspriserna i staden öka lika mycket, i absoluta tal, i hela
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

sten. Detta illustreras i Figur 2 nedan. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 68f)

![Diagram](image)

Figur 2 Effekten av befolkningsökning med konstant transportkostnad och bostadsdensitet (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 69).

All prisökning hänförs till lägeshyran, precis som diskuterats tidigare. Bostadspriserna vid den nya utkanten består av samma nivå på jordbrukshyran och konstruktionskostnadshyran som tidigare. Hyresgradienten är samma som tidigare, vilket leder till att bostadspriset ökar lika mycket i hela staden i absoluta tal. Den procentuella ökningen blir högre i den gamla urbana gränsen eftersom ursprungsnivån var lägre. Detta resonemang bygger på samma jämnviktsresonemang som tidigare. Analysen kan sammanfattas i en viktig princip:

Princip 1:

"Other things being equal, larger cities will have higher average location rents." (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 69)

25
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

En annan intressant effekt av denna princip är hur lönerna påverkas. Om lönerna skulle vara lika stora i en liten respektive stor stad, skulle det innebära att de i den mindre staden skulle ha högre ekonomisk välfärd. Anledningen är att enligt principen är bostadskostnaden lägre i den mindre staden och därför har invånarna mer pengar över till annat. En sådan obalans är inte hållbar på en fri marknad, därför skulle människor flytta från den större staden till den mindre. Vad som händer för att motverka detta är att invånarna i den större staden får högre inkomst. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 70)

3.3.2 Befolkningsförändring med konstant area

I föregående avsnitt utgick resonemanget från att de nya invånarna bosatte sig vid den urbana gränsen så att den flyttades ut från stadens centrum. För att komma fram till nästa princip görs antagandet att de nya invånarna bosätter sig jämnt fördelade i staden så att den urbana gränsen ej flyttas ut. Effekten av detta kan vara svårare att förstå.

Eftersom areaen av staden är konstant så ökar inte transportkostnaden per person, vilket den gjorde i föregående fall när avståndet till CBD ökade. Däremot kommer fler personer bosätta sig på samma yta, exempelvis per hektar, vilket leder till att transportkostnaden per hektar då ökar och därmed ökar även hyresgradienten. Den urbana gränsen kommer att ha samma läge som tidigare och bostadspriset där kommer fortfarande vara samma eftersom lägeshyran är obefintlig. Däremot kommer priserna öka i centrum. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 71f)

Sambandet förstås förmodligen bättre med ett exempel. Vi tänker att befolkningen ökar utan att det byggs mer, alltså det bor genomsnitt två personer per bostad istället för en. Därmed är konstruktionskostnaden per hektar samma som tidigare. De två personerna i centrum kommer betala mer för läget tillsammans eftersom de två som bor vid utkanten måste betala mer för att transportera sig dit. Effekten illustreras i Figur 3 nedan.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Figur 3 Effekten av befolkningsökning med konstant area och konstruktionskostnad. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 71)

Figuren visar att priserna vid den urbana gränsen är samma som tidigare samtidigt som priserna har höjts i resten av staden. Den procentuella ökningen blir större ju närmare CBD bostaden är belägen. Nästa princip följer härav:

Princip 2:
“If a city grows by increasing area rather than density, property rent growth will be relatively greater closer to the periphery; but if a city grows by increasing density instead of area, property rent growth will be relatively greater the closer to the center of the city.” (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 72)

3.3.3 Förändring av transportkostnad

Tidigare förklarar jag vad som händer om befolkningen förändras då transportkostnad per person och inkomst har varit konstanta. Nu kommer jag gå in på vad som händer i staden om transportkostnaderna per person förändras då befolkning och inkomst hålls konstant.

Förändringen kan ske på flera olika sätt. Tiden att transporterar sig till CBD kan minska på grund av bättre infrastruktur. Dessutom kan ny teknik innebära att färre resor till CBD är nödvändiga tack vare ny teknik som datorer och förändrat sätt att arbeta samt handla. Ett exempel är internethandlingen som innebär att färre transporter till centrum är nödvändigt. (Geltner, Miller, Clayton, & Eichholtz, 2007) Jag menar dessutom att en orsak till förändrad transportkostnad kan vara att
befolkningen värdesätter tiden annorlunda. Alternativkostnaden kan både öka eller minska.

![Diagram](image.png)

Figur 4 Effekten av minskade transportkostnader med ökat köp av mark. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 73)

Det andra extremfallet är att densiteten förblir densamma och därmed förblir arean oförändrad. Detta skulle kunna inträffa då det finns relativt stora politiska begränsningar. Bostadspriserna kommer då bli lägre i hela staden, med undantag för precis i den urbana gränsen där bostadspriset inte innehåller någon lägeshyra. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 73) Detta extremfall illustreras nedan i Figur 5.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Figur 5 Effekten av minskade transportkostnader med oförändrad densitet. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 73)

Det kan verka märkligt att bättre teknik och infrastruktur skulle bidra till sänkta bostadspriserna och markvärdena. Tänk då på att anledningen till att bo centralt är för att slippa transportera sig dit. Om det inte skulle funnits några transportkostnader så skulle det inte ha någon som helst betydelse var en bostad är belägen. Minskning av transportkostnaderna jämnar därför ut bostadspriserna i olika lägen. (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 73) Effekten av minskad transportkostnad ger följande princip:

Princip 3:
"Declining transport costs (per person, per mile, or per year) holding population and income constant, will always reduce the value of location rent in the center of the city; the effect on the location rent near the periphery is generally ambiguous, depending on changes in density.” (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 74)

3.3.4 Inkomstförändring

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Princip 4:
"Increasing real income per capita (holding population constant) will tend to decrease rent gradient, with a possible result of absolute reductions in land rent at the center of the city, although a secondary transport cost increase effect (and/or increased open space reservation) due to higher incomes may mitigate this result or even reverse it, especially if the spatial expansion of the city is constrained.” (Geltner, Miller, Clayton, & Eichholtz, 2007, s. 75)

4 Värderingsteori

4.1 Värdeorie

4.2 Marknadsvärde

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Vid en överlåtelsesituation är det intressanta värdet hur mycket pengar säljaren troligen kommer att få. Vid en överlåtelsesituation är därför marknadsvärdet det intressanta begreppet. För detta arbete är det också marknadsvärdet som är det intressanta begreppet. Det finns flera olika definitioner för marknadsvärde. Lantmäteriverket & Mäklarsamfundet (2008, s. 6) har sammanfattat följande definition:

"Marknadsvärdet är det mest sannolika priset vid försäljning av fastigheten vid en viss angiven tidpunkt under normala förhållanden på en fri och öppen marknad, med tillräcklig marknadsförings tid, utan partsrelationer och utan tvång." (Lantmäteriverket & Mäklarsamfundet, 2008, s. 6)

Det är viktigt att ha med sig detta resonemang vid fortsatt läsning av analysen i denna rapport. Analysen grundar sig på faktiska priser som har registrerats vid försäljningar av bostadsrätter. Vilka förutsättningar som har gällt vid överlåtelsen är okänd.

4.3 Hedonisk prissättningsmodell

Rosens (1974) principer leder till att ett fastighetsvärde kan beskrivas av en funktion där ett pris (P) beror på ett flertal variabler (Z), nedan presenteras en linjär sådan funktionsform:

\[Värde = P(Z) + \varepsilon = \alpha + \beta₁F + \beta₂O + \beta₃T + \varepsilon \]

F = Fastighetsanknutna egenskaper
O = Områdesanknutna egenskaper
T = Tidsanknutna egenskaper
\(\beta \) = Pris för egenskapen
\(\alpha \) = Konstant
\(\varepsilon \) = Normalfördelad stokastisk variabel

De fastighetsanknutna egenskaperna är bland annat boarea, byggnadens ålder och skick. Områdesanknutna egenskaperna beror på läget och yttre påverkan på fastigheten från omgivningen. Det kan vara närhet till arbetsplats eller tillgång till kommunikation. De tidsanknutna egenskapernas funktion är att fånga upp pristrender som har skett från försäljningstidpunkten. Dessa förklarande variablerna ska fånga alla systematiska effekter på priset medan de slumpmässiga återstår och hamnar i residualen (\(\varepsilon \)). (Janssen & Söderberg, 1999, s. 362ff)

Det råder ingen enighet i litteraturen om vilken funktionsform som bör användas. Den som presenteras ovan är representerar en additiv modell. Denna skiljs från en

En viktig tillämpning av modellen är möjligheten att uppskatta värdet av en specifik egenskap för en vara. I detta arbete tittar jag på bostadsrätter som en vara och det som är den intressanta egenskapen är läget i förhållande till CBD. Den hedoniska prissättningsmodellen innebär att det är möjligt att räkna ut, från ett datamaterial med försäljningar, hur mycket köparen betalar för läget.

4.4 Prisbildning och prispåverkande faktorer

De prispåverkande faktorerna kan delas in i olika kategorier beroende på deras karaktär. I avsnitt 4.3 Hedonisk prissättningsmodell ovan delas egenskaperna in i tre

Undersökningen visar att efter läget är storleken den mest betydelsefulla faktorn för prisnivån. Det kan dock vara svårt att jämföra kvadratmeterpriset för olika stora lägenheter. Detta beror på att marginalvärdet av en kvadratmeter bostadsyta är i de flesta fall inte lika stor som genomsnittsvärdet. Vid beaktande av storleksfaktorn måste det även tas hänsyn till antal rum. (Gavlefors & Roos, 1992, s. 9)

Föreningens ekonomi är också en faktor som har stor påverkan på priset. Två faktorer som kan undersökas är föreningens nettoskulld per kvadratmeter bostadsyta och årsavgift per kvadratmeter bostadsyta. Dessa två faktorer samvarierar. Är nettoskulden hög så är avgiften hög och vice versa. Föreningens ekonomi påverkas i hög grad av byggnadens ålder. Nettoskulden är i många fall samma för byggnader med samma nybyggnadsår. Generellt har bostadsrättsföreningar i nyare byggnader högre nettoskuld och avgift. (Gavlefors & Roos, 1992, s. 9)
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Bostadsrättens inre skick och utrustningsstandard borde också påverka priset. Det finns även vissa egenskaper hos fastigheten som påverkar priset på bostadsrätten. En sådan faktor är om byggnaden är utrustad med hiss. En annan är om underhållet är eftersatt på byggnaden. (Gavlefors & Roos, 1992, s. 10f)

Gavlefors och Roos (1992, s. 61) menar att det går att förklara 85 procent av bostadsrättens prisvariation om bostadsrättens läge, storlek, och årsavgift/nettoskuld är kända.

4.5 Tidigare studier

Enström (2001) utförde ett examensarbete som undersöker vilken betydelse läget har för priset på hyresfastigheter. Studien undersöker hur läget ska mätas. Författaren har definierat läget på följande sätt: fågelvägen, summan av sidorna i en triangl,
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

5 Malmöregionen och data

I detta avsnitt redogörs för empirin för området där analysen sker. Området definieras och karaktärsdragen för orterna tas upp. I följande avsnitt tas även upp relevant statistik för områdena. Den största mängd data som används i analysen består av uppgifter om bostadsrättsförsäljningar, dessa data presenteras under avsnitt 5.2 Datamaterial över bostadspriser.

5.1 Beskrivning av området

- Malmö
- Lund
- Vellinge
- Lomma
- Burlöv
- Trelleborg
- Skurup
- Svedala
- Staffanstorp
- Kävlinge
- Eslöv
- Höör

(SCB, RM/REN Regionala indelningar 2005)

5.1.1 Malmö

befolkningsdensiteten 18 invånare per hektar. År 2009 bodde det i genomsnitt 2 personer per lägenhet i Malmö. (Malmö stadskontor, 2008)

Figur 7 Möjliga CBD i Malmö. Från norr till söder; centralstationen, Stortorget, Gustav Adolfs torg.

Utformningen av Malmö är inte typiskt för en monocentrisk stad. Enligt teorin ska avståndet från utkanten till centrum vara lika långt i hela staden. Malmös centrum är i motsats till denna teori belägen i den nordvästra utkanten av staden. Genom åren har staden vuxit betydligt mer i östlig och sydlig riktning än i västlig och nordostlig. Varför staden inte har vuxit i västlig riktning beror på fysiska begränsningar i form utav kusten. Så långt skulle det gå att säga att Malmö är en typisk kuststad enligt den monocentriska teorin. Varför staden inte har vuxit i nordostlig riktning kan bero på
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

kommungränsen. Denna är belägen precis i denna riktning vid stadsgränsen, se Figur 8 nedan, och kan ses som en barriär. I Sverige råder det kommunalt planmonopol, vilket betyder att politiker snarare än den fria marknaden bestämmer var som ska byggas. Politikerna i Malmö har därför varit begränsade att endast besluta om utbyggnad inom kommunen och därför blir kommungränsen ett hinder. Figur 8 nedan visar hur staden borde varit utformad enligt den monocentriska stadsmodellen för att transportkostnaderna ska minimeras.

Figur 8 Malmöns norra kommungräns utmarkerad, den stora cirkeln representerar Malmöns yta med centrum i den mindre cirkeln.

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Öresundsbron har kortat restiden markant över Öresund. Pendlingen över sundet har ökat från ca 2 000 dagliga pendlare innan brons invigning till 20 700 under 2011. Hela 96 % av dessa bor i Sverige och arbetar i Danmark. 60 % av pendlarna bor i Malmö kommun. En stor del av pendlingsökningen beror på skillnaden i bostadspriserna i Danmark och Sverige. (Öresundsbro Konsortiet, 2011, s. 12ff)

5.1.2 Lund

Bostadsbeståndet i Lund består till största del av hyresrätter, 40,7 %. Bostadsrätten utgör 29,9 % och 29,4 % är bostäder med äganderätt (2008). Storleken på bostäderna är relativt jämnt fördelat över beståndet. 3:or och 2:or är dock dominerande med 22,6 % respektive 21,6 %. Antalet personer som bor per bostad har minskat något sen är 2000 till drygt 2 personer i genomsnitt i hela kommunen. Flera personer bor i stadsdelen Värpinge där 2,5 personer bor per bostad. (Kommunkontoret Lund (2), 2009) Det finns ca 50 000 arbetsplatser i Lund. 53,1 % av befolkningen i Lunds kommun arbetar i staden. Utpendlingen från kommunen är 34 %, ca 15 000 personer. Störst pendling sker till Malmö, dit 15,8 % av Lunds befolkning pendlar. (Kommunkontoret Lund, 2006)

Figur 9 Lund stad med sydvästra kommungränsen markerad. De två små cirkelnarna visar möjliga CBD; Stortorget i söder och Ideon i norr.

5.1.3 MalmöLundregionen

Befolkningsökningen har varit relativt stark i regionen de senaste åren. Mellan år 2000 och 2007 ökade befolkningen med genomsnitt 8 % i varje kommun. Lägst var ökningen i Burlöv med ca 6 % och högst i Kävlinge med 13 %. Malmö står för ungefär hälften av den totala befolkningsökningen. Under år 2000 till år 2007 byggdes 17 100 bostäder inom Malmö-Lundregionen. Av dessa är 10 000 bostäder i flerbostadshus. (Bjärenlöv & Svärd, 2008)

5.1.4 Data för Stor-Malmö

Förändring av landareal och folkmängd för den största tätorten i respektive kommun i Stor-Malmö.

<table>
<thead>
<tr>
<th>Tätort</th>
<th>Land-areal hektar</th>
<th>Folkmängd 2005-12-31</th>
<th>Täthet inv/km²</th>
<th>Land-areal 2010-12-31</th>
<th>Folkmängd 2010-12-31</th>
<th>Täthet inv/km²</th>
<th>Förändring Befolkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malmö</td>
<td>7 199</td>
<td>258 020</td>
<td>3 584</td>
<td>7 681</td>
<td>280 415</td>
<td>3 651</td>
<td>483</td>
</tr>
<tr>
<td>Lund</td>
<td>2 499</td>
<td>76 188</td>
<td>3 048</td>
<td>2 575</td>
<td>82 000</td>
<td>3 215</td>
<td>76</td>
</tr>
<tr>
<td>Trelleborg</td>
<td>1 143</td>
<td>25 643</td>
<td>2 244</td>
<td>1 366</td>
<td>28 290</td>
<td>2 071</td>
<td>223</td>
</tr>
<tr>
<td>Eslöv</td>
<td>893</td>
<td>16 551</td>
<td>1 853</td>
<td>914</td>
<td>17 748</td>
<td>1 942</td>
<td>21</td>
</tr>
<tr>
<td>Staffanstorp</td>
<td>649</td>
<td>13 784</td>
<td>2 123</td>
<td>663</td>
<td>14 808</td>
<td>2 335</td>
<td>13</td>
</tr>
<tr>
<td>Hörö</td>
<td>597</td>
<td>7 379</td>
<td>1 236</td>
<td>612</td>
<td>7 865</td>
<td>1 286</td>
<td>15</td>
</tr>
<tr>
<td>Svedala</td>
<td>459</td>
<td>9 593</td>
<td>2 089</td>
<td>489</td>
<td>10 627</td>
<td>2 174</td>
<td>30</td>
</tr>
<tr>
<td>Lomma</td>
<td>417</td>
<td>8 820</td>
<td>2 114</td>
<td>482</td>
<td>10 837</td>
<td>2 248</td>
<td>65</td>
</tr>
<tr>
<td>Skurup</td>
<td>454</td>
<td>6 978</td>
<td>1 537</td>
<td>477</td>
<td>7 565</td>
<td>1 587</td>
<td>23</td>
</tr>
<tr>
<td>Kävlinge</td>
<td>452</td>
<td>9 593</td>
<td>2 089</td>
<td>468</td>
<td>9 049</td>
<td>1 932</td>
<td>16</td>
</tr>
<tr>
<td>Vellinge</td>
<td>305</td>
<td>6 115</td>
<td>2 002</td>
<td>317</td>
<td>6 304</td>
<td>1 981</td>
<td>11</td>
</tr>
</tbody>
</table>

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Befolkning 2007-12-31 Lund

<table>
<thead>
<tr>
<th>Län</th>
<th>Kommun</th>
<th>Förs-kod</th>
<th>Församling</th>
<th>Totalt</th>
<th>Män</th>
<th>Kvinnor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128101</td>
<td>Lunds domkyrkoförs.</td>
<td>12 752</td>
<td>6 154</td>
<td>6 598</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128102</td>
<td>S:t Peters kloster</td>
<td>14 544</td>
<td>7 119</td>
<td>7 425</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128103</td>
<td>Stora Råby</td>
<td>5 430</td>
<td>2 706</td>
<td>2 724</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128104</td>
<td>Lunds Allhelgonaförs.</td>
<td>8 710</td>
<td>4 249</td>
<td>4 461</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128105</td>
<td>Norra Nöbbelöv</td>
<td>7 376</td>
<td>3 631</td>
<td>3 745</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128124</td>
<td>Helgeand</td>
<td>9 035</td>
<td>4 361</td>
<td>4 674</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128125</td>
<td>S:t Hans</td>
<td>11 678</td>
<td>6 145</td>
<td>5 533</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128126</td>
<td>Östra Torn</td>
<td>8 920</td>
<td>4 368</td>
<td>4 552</td>
</tr>
<tr>
<td>Skåne</td>
<td>Lund</td>
<td>128127</td>
<td>Torn</td>
<td>2 689</td>
<td>1 383</td>
<td>1 306</td>
</tr>
</tbody>
</table>

Befolkningsförändring Lund stad

<table>
<thead>
<tr>
<th>Befolkning</th>
<th>Förändring</th>
<th>Förändring %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>81 134</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>82 990</td>
<td>1 856</td>
</tr>
<tr>
<td>2009</td>
<td>84 613</td>
<td>1 623</td>
</tr>
<tr>
<td>2010</td>
<td>85 673</td>
<td>1 060</td>
</tr>
</tbody>
</table>

Figur 11 Befolkning i Lund tätort. (SCB, Församlingsfolkmängd)

Befolkning 2007-12-31 Malmö

<table>
<thead>
<tr>
<th>Län</th>
<th>Kommun</th>
<th>Förs-kod</th>
<th>Församling</th>
<th>Totalt</th>
<th>Män</th>
<th>Kvinnor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128001</td>
<td>Malmö S:t Petri</td>
<td>17 535</td>
<td>8 624</td>
<td>8 911</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128002</td>
<td>Slottsstaden</td>
<td>20 555</td>
<td>9 180</td>
<td>11 375</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128003</td>
<td>Kirseberg</td>
<td>16 394</td>
<td>8 509</td>
<td>7 885</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128004</td>
<td>Malmö S:t Pauli</td>
<td>18 507</td>
<td>8 928</td>
<td>9 579</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128005</td>
<td>Malmö S:t Johannes</td>
<td>18 314</td>
<td>8 511</td>
<td>9 803</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128006</td>
<td>Möllevången-Sofielund</td>
<td>35 311</td>
<td>17 918</td>
<td>17 393</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128007</td>
<td>Limhamn</td>
<td>21 488</td>
<td>10 410</td>
<td>11 078</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128008</td>
<td>Fosie</td>
<td>24 609</td>
<td>12 196</td>
<td>12 413</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128009</td>
<td>Västra Skrävlinge</td>
<td>25 878</td>
<td>12 860</td>
<td>13 018</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128010</td>
<td>Husie och Södra Sallerup</td>
<td>16 984</td>
<td>8 395</td>
<td>8 589</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128016</td>
<td>Hylleie</td>
<td>10 098</td>
<td>4 811</td>
<td>5 287</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128017</td>
<td>Eriksfält</td>
<td>17 707</td>
<td>8 337</td>
<td>9 370</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128018</td>
<td>Kulladal</td>
<td>12 160</td>
<td>5 959</td>
<td>6 201</td>
</tr>
<tr>
<td>Skåne</td>
<td>Malmö</td>
<td>128019</td>
<td>Bunkeflo</td>
<td>9 102</td>
<td>4 648</td>
<td>4 454</td>
</tr>
</tbody>
</table>

Befolkningsförändring Malmö stad

<table>
<thead>
<tr>
<th>Befolkning</th>
<th>Förändring</th>
<th>Förändring %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>264 642</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>269 716</td>
<td>5 074</td>
</tr>
<tr>
<td>2009</td>
<td>276 442</td>
<td>6 726</td>
</tr>
<tr>
<td>2010</td>
<td>281 095</td>
<td>4 653</td>
</tr>
</tbody>
</table>

Figur 12 Befolkning i Malmö tätort. (SCB, Församlingsfolkmängd)
5.2 Datamaterial över bostadspriser

Det empiriska datamaterialet över bostadspriser tillhandahålls av Mäklarstatistik AB. Eftersom det mesta boendet i städer sker i lägenheter har jag valt att enbart titta på bostadsrätter. Genom att bara ha en typ av boendeform som underlag slipper jag problemet med jämförelse mellan olika boendeformer. Hyresrätter har valts bort eftersom hyrorna inte är marknadsstyrd i Sverige.

De data som används i detta arbete består av ungefär 70 % av de försäljningar som sker av mäklare. Dessa förmedlas av fastighetsbyran, Svensk fastighetsförmedling och mäklarsamfundets övriga medlemmar. Uppgifterna grundar sig på köpekontraktet som ligger till grund för försäljningen. Statistiken samlas in, bearbetas och produceras av SCB.

I datamaterialet som används i detta arbete finns uppgifter från försäljningar mellan 1 januari 2008 till 31 oktober 2011 i Stor-Malmö (se definition ovan). Data för varje försäljning består av följande variabler:

- Kontraktsdatum
- LKF kod (Län, kommun, församling)
- Försäljningspris
- Boyta
- Antal rum
- Månadsavgift
- Koordinater (RT90)

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

är utmärkt på kartan med en prick. Flest försäljningar har skett i Malmö och Lund. Övriga orter har betydligt färre försäljningar.

Figur 14 Försäljningarna i Stor-Malmö
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
6 Analys

I detta kapitel menas med Malmö och Lund tätorterna och inte kommunerna, om inget annat anges.

6.1 Val av CBD

Lund har ett relativt tydligt klassiskt centrum i form av gamla staden, med Stortorget som mittpunkt. Här finns de flesta butikerna och gågator. Många människor vistas inom området och de flesta lundabor skulle påstå att det är stadens centrum. Det finns dock andra möjliga platser som kan utgöra CBD. Som nämnts ovan, under avsnitt 5.1.2 Lund, finns det ett område i norra Lund bestående av företagsparken Ideon och universitet där många människor transporterar sig varje dag för att arbeta eller studera. Detta område skulle också kunna utgöra CBD. Den högsta koncentrationen av bostäder och de högsta priserna finns dock i centrum vilket talar för att CBD är beläget här. Stortorget är dessutom beläget inom det riktvärdesområde som enligt

Vid en analys av Stor-Malmö kan det finnas fleras städer eller orter som har CBD. Malmö är dock den stad i regionen dit flest pendlar och därför antas CBD för regionen vara i Malmö. I detta fall är det rimligt att använda samma punkt som CBD, alltså Stortorget.

6.2 Avståndsmätning

6.2.1 Tidsavstånd

Vid analyserna av Stor-Malmö som område används tidsåtgången som ett avståndsmått för jämförelse med fågelvägen. För varje ort utanför Malmö räknas tiden att transportera sig till Malmöcentral ut. Inom samma ort antas samma tid, oavsett var i orten bostaden är belägen. För bostäderna i Malmö antas att tiden att transportera sig till CBD är 4 minuter per kilometer fågelvägen.

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

<table>
<thead>
<tr>
<th>LKF</th>
<th>Församling</th>
<th>Tid i minuter till Malmö CBD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buss</td>
<td>Tåg</td>
</tr>
<tr>
<td>123000</td>
<td>Staffanstorp</td>
<td>32</td>
</tr>
<tr>
<td>123006</td>
<td>Uppåkra</td>
<td>22</td>
</tr>
<tr>
<td>123013</td>
<td>S:t Staffan</td>
<td>46</td>
</tr>
<tr>
<td>123100</td>
<td>Burlöv</td>
<td>x</td>
</tr>
<tr>
<td>123101</td>
<td>Burlöv</td>
<td>x</td>
</tr>
<tr>
<td>123300</td>
<td>Vellinge</td>
<td>37</td>
</tr>
<tr>
<td>123304</td>
<td>Vellinge-Månstorp</td>
<td>47</td>
</tr>
<tr>
<td>123305</td>
<td>Skanör-Falsterbo</td>
<td>51</td>
</tr>
<tr>
<td>123309</td>
<td>Hölviiken</td>
<td>35</td>
</tr>
<tr>
<td>126100</td>
<td>Kävlinge</td>
<td>x</td>
</tr>
<tr>
<td>126101</td>
<td>Kävlinge</td>
<td>x</td>
</tr>
<tr>
<td>126103</td>
<td>Västra karaby</td>
<td>x</td>
</tr>
<tr>
<td>126104</td>
<td>Lackalänga-Stävie</td>
<td>32</td>
</tr>
<tr>
<td>126110</td>
<td>Hofterup</td>
<td>49</td>
</tr>
<tr>
<td>126112</td>
<td>Löndebygdén</td>
<td>49</td>
</tr>
<tr>
<td>126200</td>
<td>Lomma</td>
<td>23</td>
</tr>
<tr>
<td>126201</td>
<td>Lomma</td>
<td>23</td>
</tr>
<tr>
<td>126205</td>
<td>Bjärred</td>
<td>38</td>
</tr>
<tr>
<td>126300</td>
<td>Svedala</td>
<td>x</td>
</tr>
<tr>
<td>126301</td>
<td>Svedala</td>
<td>x</td>
</tr>
<tr>
<td>126400</td>
<td>Skurup</td>
<td>x</td>
</tr>
<tr>
<td>126401</td>
<td>Skurup</td>
<td>x</td>
</tr>
<tr>
<td>126406</td>
<td>Skivarps</td>
<td>56</td>
</tr>
<tr>
<td>126412</td>
<td>Villie</td>
<td>x</td>
</tr>
<tr>
<td>126702</td>
<td>Höör</td>
<td>x</td>
</tr>
<tr>
<td>128014</td>
<td>Oxie</td>
<td>x</td>
</tr>
<tr>
<td>128021</td>
<td>Tygelsjö-Västra klagstorp</td>
<td>27</td>
</tr>
<tr>
<td>128100</td>
<td>Lund</td>
<td>x</td>
</tr>
<tr>
<td>128101</td>
<td>Lunds domkyrkoförs.</td>
<td>x</td>
</tr>
<tr>
<td>128102</td>
<td>S:t Peters kloster</td>
<td>x</td>
</tr>
<tr>
<td>128103</td>
<td>Stora Räby</td>
<td>x</td>
</tr>
<tr>
<td>128104</td>
<td>Lund Allhelgonaförs.</td>
<td>x</td>
</tr>
<tr>
<td>128105</td>
<td>Norra nöbbelöv</td>
<td>x</td>
</tr>
<tr>
<td>128113</td>
<td>Södra sandby</td>
<td>46</td>
</tr>
<tr>
<td>128116</td>
<td>Dalby</td>
<td>38</td>
</tr>
<tr>
<td>128121</td>
<td>Veberöd</td>
<td>48</td>
</tr>
<tr>
<td>128124</td>
<td>Helgeand</td>
<td>x</td>
</tr>
<tr>
<td>128125</td>
<td>Lund Östra stadsförs.</td>
<td>x</td>
</tr>
<tr>
<td>128126</td>
<td>Östra torn</td>
<td>x</td>
</tr>
<tr>
<td>128127</td>
<td>Torn</td>
<td>x</td>
</tr>
<tr>
<td>128500</td>
<td>Eslöv</td>
<td>x</td>
</tr>
<tr>
<td>128501</td>
<td>Eslöv</td>
<td>x</td>
</tr>
<tr>
<td>128502</td>
<td>Östra Onsjö</td>
<td>x</td>
</tr>
<tr>
<td>128509</td>
<td>Ringsjö, del</td>
<td>x</td>
</tr>
<tr>
<td>128513</td>
<td>Loberöd</td>
<td>60</td>
</tr>
<tr>
<td>128700</td>
<td>Trelleborg</td>
<td>48</td>
</tr>
<tr>
<td>128701</td>
<td>Trelleborg</td>
<td>48</td>
</tr>
<tr>
<td>128706</td>
<td>Hammarlöv</td>
<td>x</td>
</tr>
<tr>
<td>128715</td>
<td>Dalköpinge</td>
<td>63</td>
</tr>
<tr>
<td>128721</td>
<td>Källstorp</td>
<td>72</td>
</tr>
<tr>
<td>128731</td>
<td>Anderslöv</td>
<td>62</td>
</tr>
</tbody>
</table>

Figur 15 Tidsåtgång från respektive församling inom Stor-Malmö till Malmö CBD. (Reseplaneraren), (Vägbeskrivning)
6.3 Den hedoniska prissättningsmodellen

Följande regressionsanalyser är utförda med hjälp av Microsoft Excel. Programmet använder minsta-kvadratmetoden för att utföra regressionsanalyserna. Detta innebär att en rätt linje, regressionslinje, anpassas till det statistiska datamaterialet (Körner & Wahlgren, 2000, s. 328). Därmed tvingas sambanden att bli linjära.

Min formel för den hedoniska prissättningsmodellen, som används i hypotesesterna, har följande utseende:

\[
Försäljningspris = P(Z) = \text{Konstant} + \beta_1 \cdot 2009 + \beta_2 \cdot 2010 + \beta_3 \cdot 2011 + \beta_4 \\
* \text{Månadsavgift} + \beta_5 \cdot \text{Avstånd CBD} + \beta_6 \cdot \text{Boyta} + \beta_7 \\
* 1 \text{Rum} + \beta_8 \cdot 3 \text{Rum} + \beta_9 \cdot 4 \text{Rum} + \beta_{10} \cdot > 4 \text{Rum}
\]

Denna modell förklarar priset med hjälp av 11 stycken koefficienter. Modellen är uppbyggd så att en konstant är baspriset för bostadsrätten. Den är alltid samma för samtliga bostadsrätter oavsett vilka egenskaper den har. De övriga 10 koefficienterna multipliceras med \(\beta_\cdot \), vilket är det hedoniska priset för den speciella egenskapen. Detta förklarar jag ovan under avsnitt 4.3 Hedonisk prissättningsmodell. Den intressanta delen i modellen i min studie är \(\beta_5 \cdot \text{Avstånd CBD} \). Detta förklarar hur mycket bostaden sjunker i pris när avståndet till centrum ökar. Avståndet definieras olika beroende på vilken analys som görs.

Vid regressionsanalyserna fås även ett par andra intressanta värden. T-kvot visar den statistiska signifikansen för respektive koefficient. T-kvot visar inom vilken konfidensgrad koefficienterna är. Alltså om den är statistisk säkerställd eller ej. År T-
kvot inom intervallet ±1,96 kan nollhypotesen, alltså inget samband, förkastas på 95 % nivå. P-värde visar vilken signifikansnivå en variabel har. Ett P-värde på 0.05 innebär motsvarande att nollhypotesen kan förkastas på 95 % nivå.

Modellen förklarar inte all variation mellan de olika observationerna. Därför används termen R^2 (R-kvadrant) som ett mätt på förklaringsgraden. R^2 för en beroende variabel mäter hur stor del av den totala variationen, för denna, som förklaras av det linjära sambandet mellan variablerna (Körner & Wahlgren, 2000, s. 332). Som förklaringsgrad används den justerade R^2.

6.3.1 Lägesvariabel

Det finns däremot en stor nackdel med att använda en ytterligare lägesvariabel som komplement till avståndsvariabeln. Generellt sett så ligger de attraktiva lägena närmre CBD och de mindre attraktiva lägena längre från CBD, vid utkanten av staden. En kompletterande lägesvariabel skulle då delvis förklara samma sak som avståndsvariabeln och det skulle därför bli en slags konkurrens om förklaringskraften. I så fall skulle det inte gå att utläsa hur stor del av priserna som beror på avståndet till CBD.

Eftersom analyserna grundas på försäljningar av bostadsrätter finns det ingen färdig områdes- eller lägesindelning, vilka skulle behövas vid användning av en ytterligare

6.4 Basmodeller

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>667049</td>
<td>34654</td>
<td>19</td>
<td>0,000</td>
<td>599108</td>
</tr>
<tr>
<td>2009</td>
<td>154716</td>
<td>18033</td>
<td>9</td>
<td>0,000</td>
<td>119362</td>
</tr>
<tr>
<td>2010</td>
<td>270974</td>
<td>17903</td>
<td>15</td>
<td>0,000</td>
<td>235874</td>
</tr>
<tr>
<td>2011</td>
<td>301943</td>
<td>19060</td>
<td>16</td>
<td>0,000</td>
<td>264576</td>
</tr>
<tr>
<td>Boyta</td>
<td>22480</td>
<td>546</td>
<td>41</td>
<td>0,000</td>
<td>21409</td>
</tr>
<tr>
<td>Månadsavgift</td>
<td>-129</td>
<td>8</td>
<td>-16</td>
<td>0,000</td>
<td>-145</td>
</tr>
<tr>
<td>1 Rum</td>
<td>63211</td>
<td>21887</td>
<td>3</td>
<td>0,004</td>
<td>20301</td>
</tr>
<tr>
<td>4 Rum</td>
<td>69435</td>
<td>22719</td>
<td>3</td>
<td>0,002</td>
<td>24894</td>
</tr>
<tr>
<td>>4 Rum</td>
<td>333234</td>
<td>37683</td>
<td>9</td>
<td>0,000</td>
<td>259356</td>
</tr>
<tr>
<td>Avstånd CBD</td>
<td>-332</td>
<td>7</td>
<td>-51</td>
<td>0,000</td>
<td>-345</td>
</tr>
</tbody>
</table>

Figur 16 Utdatasammanfattning för grundläggande hedonisk prissättningsmodell över Lund.

Modellen är utformad för att uppnå så hög förklaringsgrad som möjligt. Den utformas med hjälp av tester på det aktuella empiriska materialet. Den övre delen av figuren består av en tabell som bland annat beskriver förklaringsgraden. Justerad R-kvadrat uppgår till ca 65 %. Detta kan tyckas vara en relativt låg förklaringsgrad med tanke på de modeller som gjorts i andra studier. Flera modeller har uppnått en förklaringsgrad på 80-85 %. Detta har troligen sin förklaring i sättet att mätta läget, precis som jag diskuterar i avsnitt 6.3.1 Lägesvariabel ovan.

57

Effekterna av månadsavgift och boyta är ganska självklara. För varje extra kvadratmeter bostad lägenheten består av, är en köpare beredd att betala ca 22 000 kr mer. Det är rimligt att tro att varje kvadratmeter inte är lika mycket värd, vilket min modell inte fängar upp. Till viss mån fångas dock effekten av marginalkostnaden upp av variabeln för antal rum, eftersom ju fler rum en lägenhet har ju större brukar den vara. Testerna som gjorts för att få fram modellen gav bäst förklaringsgrad när ett
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

vanligt linjärt samband användes. Koefficienten för månadsavgift visar att en krona dyrare månadsavgift ger ett pris som är ca 129 kr lägre.

Figuren nedan visar motsvarande regressionsanalys för Malmö.

<table>
<thead>
<tr>
<th>UTDATASAMMANFATTNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressionsstatistik</td>
</tr>
<tr>
<td>Multipel-R</td>
</tr>
<tr>
<td>R-kvadrat</td>
</tr>
<tr>
<td>Justerad R-kvadrat</td>
</tr>
<tr>
<td>Standardfel</td>
</tr>
<tr>
<td>Observationer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>149217</td>
<td>24542</td>
<td>6</td>
<td>0,000</td>
<td>101111</td>
</tr>
<tr>
<td>2009</td>
<td>54061</td>
<td>12164</td>
<td>4</td>
<td>0,000</td>
<td>30217</td>
</tr>
<tr>
<td>2010</td>
<td>161004</td>
<td>12049</td>
<td>13</td>
<td>0,000</td>
<td>137385</td>
</tr>
<tr>
<td>2011</td>
<td>119438</td>
<td>12777</td>
<td>9</td>
<td>0,000</td>
<td>94392</td>
</tr>
<tr>
<td>Boyta</td>
<td>27319</td>
<td>447</td>
<td>61</td>
<td>0,000</td>
<td>26443</td>
</tr>
<tr>
<td>Månadsavgift</td>
<td>-119</td>
<td>6</td>
<td>-20</td>
<td>0,000</td>
<td>-131</td>
</tr>
<tr>
<td>1 Rum</td>
<td>94299</td>
<td>15235</td>
<td>6</td>
<td>0,000</td>
<td>64436</td>
</tr>
<tr>
<td>3 Rum</td>
<td>-43249</td>
<td>13278</td>
<td>-3</td>
<td>0,001</td>
<td>-69275</td>
</tr>
<tr>
<td>4 Rum</td>
<td>-50936</td>
<td>22147</td>
<td>-2</td>
<td>0,021</td>
<td>-94349</td>
</tr>
<tr>
<td>>4 Rum</td>
<td>-169021</td>
<td>38446</td>
<td>-4</td>
<td>0,000</td>
<td>-244380</td>
</tr>
<tr>
<td>Avstånd CBD</td>
<td>-171</td>
<td>3</td>
<td>-58</td>
<td>0,000</td>
<td>-176</td>
</tr>
</tbody>
</table>

Figur 17 Utdatasammanfattning för grundläggande hedonisk prissättningsmodell över Malmö.

Denna modell för Malmö uppnår endast en förklaringsgrad på 59 % att jämföra med modellen för Lund stad som har en förklaringsgrad på 65 %. Detta kan tyckas märkligt när samma modell används. En förklaring kan vara att Malmö är större än Lund och områdena inom staden kan därför få större påverkan på priserna. Precis som jag diskuterar ovan är den enda lägesfaktorn som används i min modell avstånd till CBD. Denna variabel kan inte förklara faktorer som innebär positiva och negativa effekter på priset beroende på vilket område bostaden är belägen i. En till ytan större stad har fler bostadsområden och skillnaderna mellan områdena kan bli större.

Nedan redovisas resultatet av motsvarande regressionsanalys på hela Stor-Malmö.

<table>
<thead>
<tr>
<th>UTDATASAMMANFATTNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressionsstatistik</td>
</tr>
<tr>
<td>Multipel-R 0,638</td>
</tr>
<tr>
<td>R-kvadrat 0,407</td>
</tr>
<tr>
<td>Justerad R-kvadrat 0,407</td>
</tr>
<tr>
<td>Standardfel 552243</td>
</tr>
<tr>
<td>Observationer 20899</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>-114076</td>
<td>22188</td>
<td>-5</td>
<td>0,000</td>
<td>-157566</td>
</tr>
<tr>
<td>2009</td>
<td>105661</td>
<td>11073</td>
<td>10</td>
<td>0,000</td>
<td>83956</td>
</tr>
<tr>
<td>2010</td>
<td>217521</td>
<td>11012</td>
<td>20</td>
<td>0,000</td>
<td>195937</td>
</tr>
<tr>
<td>2011</td>
<td>209296</td>
<td>11751</td>
<td>18</td>
<td>0,000</td>
<td>186263</td>
</tr>
<tr>
<td>Boyta</td>
<td>28553</td>
<td>411</td>
<td>69</td>
<td>0,000</td>
<td>27748</td>
</tr>
<tr>
<td>1 rum</td>
<td>175872</td>
<td>14258</td>
<td>12</td>
<td>0,000</td>
<td>147926</td>
</tr>
<tr>
<td>3 rum</td>
<td>-93801</td>
<td>12224</td>
<td>-8</td>
<td>0,000</td>
<td>-117761</td>
</tr>
<tr>
<td>4 rum</td>
<td>-180690</td>
<td>19862</td>
<td>-9</td>
<td>0,000</td>
<td>-219621</td>
</tr>
<tr>
<td>>4 rum</td>
<td>-299657</td>
<td>31935</td>
<td>-9</td>
<td>0,000</td>
<td>-362252</td>
</tr>
<tr>
<td>Månadsavgift</td>
<td>-184</td>
<td>5</td>
<td>-36</td>
<td>0,000</td>
<td>-194</td>
</tr>
<tr>
<td>Avstånd CBD</td>
<td>-15</td>
<td>0</td>
<td>-35</td>
<td>0,000</td>
<td>-16</td>
</tr>
</tbody>
</table>

Figur 18 Utdatasammanfattning för grundläggande hedonisk prissättningsmodell över Stor-Malmö.

Ett annat egenskapspris som skiljer sig från de två övriga modellerna är priset för avståndet till CBD. Detta pris uppgår endast till -15 kr. Alltså betydligt lägre än priset i både Lund och Malmö stad.
Mönstret som går att urskilja från de tre modellerna är att ju större området är som modellen appliceras på ju mindre blir priset för avståndet till CBD. Detta kan tyckas tala emot att den monocentriska modellen stämmer på dessa tre områden, men det finns andra förklaringar till fenomenet.

Som jag tidigare varit inne på så använder jag inte någon variabel som förklarar priserna för olika områden. Detta skulle inverka på analysen av egenskapen ”avstånd till CBD”. Detta leder till att flera områdesfaktorer utelämnas helt i regressionsanalyserna. I ett relativt litet och homogent område har sådana områdesfaktorer mindre betydelse då ett stort område har en större variation på sina områdesdelar och prisskillnaden blir därför större. Två områden kan uppvisa olika priser även om avståndet till CBD är samma. Det kan till exempel bero på att det ena området är beläget vid havet eller att området har fler rekreationsområde. Sådana faktorer tar min modell ej hänsyn till.

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

<table>
<thead>
<tr>
<th>UTDATASAMMANFATTNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressionsstatistik</td>
</tr>
<tr>
<td>Multipel-R</td>
</tr>
<tr>
<td>R-kvadrat</td>
</tr>
<tr>
<td>Justerad R-kvadrat</td>
</tr>
<tr>
<td>Standardfel</td>
</tr>
<tr>
<td>Observationer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>-90072</td>
<td>20888</td>
<td>-4</td>
<td>0,000</td>
<td>-131014</td>
</tr>
<tr>
<td>2009</td>
<td>97493</td>
<td>10454</td>
<td>9</td>
<td>0,000</td>
<td>77002</td>
</tr>
<tr>
<td>2010</td>
<td>203971</td>
<td>10399</td>
<td>20</td>
<td>0,000</td>
<td>183588</td>
</tr>
<tr>
<td>2011</td>
<td>191795</td>
<td>11099</td>
<td>17</td>
<td>0,000</td>
<td>170021</td>
</tr>
<tr>
<td>Boyta</td>
<td>28616</td>
<td>388</td>
<td>74</td>
<td>0,000</td>
<td>27856</td>
</tr>
<tr>
<td>1 rum</td>
<td>161179</td>
<td>13445</td>
<td>12</td>
<td>0,000</td>
<td>134826</td>
</tr>
<tr>
<td>3 rum</td>
<td>-89292</td>
<td>11539</td>
<td>-8</td>
<td>0,000</td>
<td>-111909</td>
</tr>
<tr>
<td>4 rum</td>
<td>-179425</td>
<td>18746</td>
<td>-10</td>
<td>0,000</td>
<td>-216169</td>
</tr>
<tr>
<td>>4 rum</td>
<td>-323223</td>
<td>30146</td>
<td>-11</td>
<td>0,000</td>
<td>-382312</td>
</tr>
<tr>
<td>Månadsavgift</td>
<td>-178</td>
<td>5</td>
<td>-37</td>
<td>0,000</td>
<td>-187</td>
</tr>
<tr>
<td>Avstånd Lund/Malmö</td>
<td>-35</td>
<td>1</td>
<td>-63</td>
<td>0,000</td>
<td>-36</td>
</tr>
</tbody>
</table>

Figur 19 Utdatasammanfattning för hedonisk prissättningsmodell med kortaste avståndet till Malmö/Lund som avståndsvariabel.

I figuren nedan visas resultatet av regressionsanalysen på Stor-Malmö med transporttiden till CBD som avståndsmått. Hur denna är definierad framgår under avsnitt 6.2.1 Tidsavstånd ovan.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

UTDATASAMMANFATTNING

Regressionsstatistik

<table>
<thead>
<tr>
<th></th>
<th>Multipel-R</th>
<th>R-kvadrat</th>
<th>Justerad R-kvadrat</th>
<th>Standardfel</th>
<th>Observationer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,706</td>
<td>0,499</td>
<td>0,499</td>
<td>507815,931</td>
<td>20899</td>
</tr>
</tbody>
</table>

Tidavstånd

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>262506</td>
<td>12</td>
<td>0,00</td>
<td>220839</td>
<td>304174</td>
</tr>
<tr>
<td>2009</td>
<td>86584</td>
<td>9</td>
<td>0,00</td>
<td>66619</td>
<td>106549</td>
</tr>
<tr>
<td>2010</td>
<td>190997</td>
<td>19</td>
<td>0,00</td>
<td>171134</td>
<td>210861</td>
</tr>
<tr>
<td>2011</td>
<td>173316</td>
<td>16</td>
<td>0,00</td>
<td>152105</td>
<td>194526</td>
</tr>
<tr>
<td>Boyta</td>
<td>27291</td>
<td>72</td>
<td>0,00</td>
<td>26549</td>
<td>28033</td>
</tr>
<tr>
<td>1 Rum</td>
<td>134882</td>
<td>10</td>
<td>0,00</td>
<td>109211</td>
<td>160554</td>
</tr>
<tr>
<td>3 Rum</td>
<td>-52434</td>
<td>-5</td>
<td>0,00</td>
<td>-74505</td>
<td>-30363</td>
</tr>
<tr>
<td>4 Rum</td>
<td>-130913</td>
<td>-7</td>
<td>0,00</td>
<td>-166746</td>
<td>-95079</td>
</tr>
<tr>
<td>>4 Rum</td>
<td>-254374</td>
<td>-9</td>
<td>0,00</td>
<td>-311950</td>
<td>-196797</td>
</tr>
<tr>
<td>Månadavgift</td>
<td>-155</td>
<td>-33</td>
<td>0,00</td>
<td>-164</td>
<td>-146</td>
</tr>
<tr>
<td>Tidavstånd</td>
<td>-39695</td>
<td>-73</td>
<td>0,00</td>
<td>-40764</td>
<td>-38626</td>
</tr>
</tbody>
</table>

Figur 20 Utdata sedan avställning för regressionsanalyse för Stor-Malmö med tidavstånd som avståndsvariabel.

En annan förklaring kan vara att skillnaden i avstånd inte blir lika stor. När avståndet mäts i meter får en bostad belägen i utkanten av Stor-Malmö ett mycket lägre pris av modellen än en bostad i utkanten av Malmö. Därför blir priset per meter relativt lågt, eftersom det i verkligheten inte är så stor skillnad. När priset per avstånd istället mäts i tid blir det inte så stor skillnad mellan en bostad i utkanten av Malmö och i utkanten av Stor-Malmö. Den som bor i utkanten av Malmö har enligt min modell fyra minuter per kilometer, alltså ca 4 min * 8 km = 32 min in till CBD. Detta stämmer relativt väl med verkligheten om personen ska cykla eller ta stadsbuss. En bostad belägen i utkanten av Stor-Malmö kan förmodligen köra bil in till CBD på samma tid. Detta gör att skillnaden inte blir lika stor för de båda bostäderna, något som förmodligen stämmer bättre överens med verkligheten.
Inom Malmö motsvarar priset 160 kr per meter från CBD. Detta värde stämmer väl med modellen för Malmö stad, vars pris för avståndsvariabeln är 170 kr per meter. Detta tyder också på att denna modell stämmer relativt bra.

6.5 Hyresgradient och prisstruktur

I detta avsnitt analyseras hur hyresgradienten ser ut för de olika områdena. I ovanstående avsnitt redovisar regressionsanalyserna som utförts på det empiriska datamaterialet för alla åren. Samma analyser används i detta avsnitt för att illustrera hyresgradienten och prisstrukturen för de tre områdena. I avsnitten längre fram kommer analyserna göras för olika år för att kunna jämföra effekterna av vad som förändras mellan åren.

Figuren nedan visar hyresgradienten för Lund. Hyresgradienterna som redovisas nedan visar hur mycket normalbostaden kostar beroende på avståndet till CBD. Enligt teorin, se avsnitt 3.3 Effekter från den monocentriska stadsmodellen ovan, ska hyresgradienten visa hur bostadspriset per yta (t.ex. hektar) beror på avståndet till CBD. Den beror alltså på hur många personer det bor per hektar. För att kunna räkna ut detta måste det finnas uppgifter på dels hur många invånare det bor på varje hektar och dels på hur många invånare det bor i varje bostad. Något sådana data har jag dock inte tillgång till och därför studeras priset per bostad istället för priset per hektar. Detta betyder inte att det blir någon förändring av lutningen av hyresgradienterna. Det som skiljer sig åt är enbart nivån på hyresgradienten, eftersom denna beror dels på hur många som bor i varje lägenhet och hur befolkningsdensiteten har förändrats.

I verkligheten kan det också tänkas gälla att prisökningen blir större närmre CBD, se avsnitt 3.2 Transportkostnad och bostadspris ovan. Hyresgradienten skulle i så fall vara konvex istället för linjär. Vid regressionsanalyserna har olika transformationer av avståndsvariabelns prövats, men ett linjärt samband gav bäst förklaringsgrad och är dessutom enklare att redovisa, dessutom blir jämförelsen bättre mellan områdena om samma transformation används.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Figur 21 Hyresgradient, Lund

Figur 22 Hyresgradient, Malmö
Vid jämförelse mellan de båda figurerna är det viktigt att titta på skalorna. Avståndet från CBD till bostaden längst bort från CBD i Malmö är ca 7 000 meter, knappt dubbelt så stort som motsvarande avstånd i Lund. Det högsta priset i Malmö är ca 1 800 000 kr i CBD för normalbostaden att jämföra med ca 2 200 000 kr i Lunds CBD. Dessutom har hyresgradienten betydligt mindre lutning i Malmö. Priset i utkanten av staden är i ungefär samma nivå som i Lunds utkant.

Figuren nedan visar hyresgradienten för Stor-Malmö med avståndet till CBD mätt som tid istället.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

6.6 Prisförändring

I detta avsnitt analyseras prisförändringen i de tre undersökningsområdena. I avsnittet prövas två hypoteser för den monocentriska stadsmodellen som förklarar hur prisförändringen i staden ska ske. Hypotes 1 och 2 prövas vilka kortfattat innebär befolkningsökning med konstant area respektive konstant densitet. Syftet är att se om hypoteserna stämmer överens med verkligheten för de tre undersökningsområdena.

6.6.1 Lund

Figur 24 Hyresgradient, Stor-Malmö med avståndet till CBD i minuter

Det högsta priset, som är i CBD, uppgår till 1 800 000 kr för normalbostaden. Detta är samma som modellen för Malmö stad, vilket det borde vara eftersom det är samma CBD. Priset för en bostad som är längst ifrån CBD har ett lägre pris än priset för en bostad i utkanten av Malmö. Detta stämmer bättre överens med både verkligheten och teorin jämfört med föregående modell. Mycket talar därmed för att avståndet till CBD bör mätas i tid när ett större område och som är mer heterogent studeras.
Av figuren framgår att priserna har i Lund ökat för varje undersökningsår. Priserna har dock ökat olika mycket beroende på avståndet till CBD. Hur stor ökningen har varit, beroende på avståndet, förklaras av priset för variablen ”avstånd till CBD”. Denna variabel illustreras av lutningen. År 2008 minskade priset med 301 kr per meter enligt min hedoniska regressionsmodell. 2009 var motsvarande siffra 326 kr, 2010 – 339 kr och 2011 – 358 kr. Detta betyder att invånarna i Lund har blivit villiga att betala mer pengar varje år för bostadens egenskap, närhet till CBD.

Av figuren framgår även att priserna vid stadens utkant har ökat. Enligt den monocentriska stadsmodellen ska detta endast ske om arean på staden har ökat, alltså att den urbana gränsen har fått ett nytt läge längre bort från CBD. Om arean inte har ökat så innebär det att i priserna vid den urbana gränsen ingår en viss lägeshyra. Enligt den monocentriska modellen ska priset här endast bestå av konstruktionskostnad och jordbrukskyra. Vid jämförelse av priserna vid Lunds utkant med priserna vid orter i närheten av Lund stärks teorin om att det finns en lägeshyra vid Lunds utkant. Konstruktionskostnaderna och jordbrukskyran borde inte skilja sig så mycket åt som de faktiska priserna gör.

I figuren nedan framgår hur prisförändringen har sett ut i olika delar av staden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>189 238 kr, 10,8%</td>
<td>140 062 kr, 7,2%</td>
<td>53 665 kr, 2,6%</td>
</tr>
<tr>
<td>500</td>
<td>176 887 kr, 11,0%</td>
<td>133 563 kr, 7,5%</td>
<td>43 973 kr, 2,3%</td>
</tr>
<tr>
<td>1000</td>
<td>164 536 kr, 11,3%</td>
<td>127 064 kr, 7,9%</td>
<td>34 282 kr, 2,0%</td>
</tr>
<tr>
<td>1500</td>
<td>152 185 kr, 11,7%</td>
<td>120 564 kr, 8,3%</td>
<td>24 591 kr, 1,6%</td>
</tr>
<tr>
<td>2000</td>
<td>139 834 kr, 12,1%</td>
<td>114 065 kr, 8,8%</td>
<td>14 899 kr, 1,1%</td>
</tr>
<tr>
<td>2500</td>
<td>127 482 kr, 12,7%</td>
<td>107 566 kr, 9,5%</td>
<td>5 208 kr, 0,4%</td>
</tr>
<tr>
<td>3000</td>
<td>115 131 kr, 13,5%</td>
<td>101 067 kr, 10,5%</td>
<td>- 4 483 kr, -0,4%</td>
</tr>
<tr>
<td>3500</td>
<td>102 780 kr, 14,7%</td>
<td>94 567 kr, 11,8%</td>
<td>- 14 174 kr, -1,6%</td>
</tr>
<tr>
<td>4000</td>
<td>90 429 kr, 16,5%</td>
<td>88 068 kr, 13,8%</td>
<td>- 23 866 kr, -3,3%</td>
</tr>
</tbody>
</table>

Figur 26 Prisförändring, Lund

I tabellen visas hur priserna har förändrats i 10 olika områden för normalbostaden. Avståndet är avståndet från CBD, där 0 innebär en bostad precis vid CBD och 4 000 är en bostad vid den urbana gränsen som är satt till 4 000 meter från CBD. Prisförändringen mellan åren 2008-2009 och 2009-2010 visar upp samma trend. I absoluta tal har priserna ökat mer ju närmre CBD de är belägna. Däremot har priserna procentuellt ökat mindre ju närmre CBD de är belägna.

Prisförändringen mellan 2010-2011 visar upp en annan trend. Mellan dessa år har priserna ökat marginellt i närheten av CBD, medan priserna har minskat vid stadens utkant.

Mellan åren 2005 och 2010 ökade Lunds tätorts area från 24,99 km\(^2\) till 25,75 km\(^2\). Detta innebär en ökning på ca 3,0 %. Befolkningen ökade samma period med 8,7 %. (SCB, Tätorternas landareal) Detta innebär att areaökningen har motsvarat 35 % av
befolkningsökningen och befolkningstäthetsökning på ca 63 % av befolkningsökningen. Tabellen nedan visar areaförändring och befolkningstäthetsförändring grundade på ovanstående antaganden.

<table>
<thead>
<tr>
<th>År</th>
<th>Area (ha)</th>
<th>Förändring (%)</th>
<th>Befolkningstäthet inv/km²</th>
<th>Förändring (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>2 526</td>
<td></td>
<td>3 106</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>2 546</td>
<td>0,8%</td>
<td>3 151</td>
<td>1,4%</td>
</tr>
<tr>
<td>2009</td>
<td>2 564</td>
<td>0,7%</td>
<td>3 190</td>
<td>1,2%</td>
</tr>
<tr>
<td>2010</td>
<td>2 575</td>
<td>0,4%</td>
<td>3 215</td>
<td>0,8%</td>
</tr>
</tbody>
</table>

Enligt den monocentriska stadsmodellen princip 2, se 3.3.2 Befolkningsförändring med konstant area ovan, ökar priset relativt sett mer vid CBD än vid utkanten om staden växer genom ökad densitet istället för ökad area. Om staden växer genom ökad area istället för densitet ökar priser relativt set mer vid utkanten. De tre senaste åren i Lund har både area och densitet ökat. Effekten av prisförändringen borde därför bli en kombination av de båda extremfallet. Den faktiska prisförändringen har varit positiv, med undantag för det senaste året där priserna har sjunkit i utkanten. De övriga åren har ökningen relativt sett varit större i utkanten av lund, vilket sker vid en ökning av stadens area. Om densiteten inte hade ökat samtidigt skulle prisökningen enligt den monocentriska modellen, i absoluta tal, vara samma i hela staden. Vi ser att priserna har ökat mer i centrum, vilket talar för att densitetökningen har lett till den tänkta effekten.

6.6.2 Malmö

Figuren nedan visar hyresgradienten för Malmö åren 2008-2011.

Av nedanstående tabell framgår prisförändringen och efterföljande tabell visar befolkningsförändringen.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Prisförändring Malmö

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolut</td>
<td>Procent</td>
<td>Absolut</td>
</tr>
<tr>
<td>0</td>
<td>128 603 kr</td>
<td>8,0%</td>
<td>128 888 kr</td>
</tr>
<tr>
<td>1000</td>
<td>99 742 kr</td>
<td>6,8%</td>
<td>125 757 kr</td>
</tr>
<tr>
<td>2000</td>
<td>70 881 kr</td>
<td>5,4%</td>
<td>122 625 kr</td>
</tr>
<tr>
<td>3000</td>
<td>42 020 kr</td>
<td>3,6%</td>
<td>119 494 kr</td>
</tr>
<tr>
<td>4000</td>
<td>13 159 kr</td>
<td>1,3%</td>
<td>116 363 kr</td>
</tr>
<tr>
<td>5000</td>
<td>-15 702 kr</td>
<td>-1,8%</td>
<td>113 232 kr</td>
</tr>
<tr>
<td>6000</td>
<td>-44 563 kr</td>
<td>-5,9%</td>
<td>110 100 kr</td>
</tr>
<tr>
<td>7000</td>
<td>-73 424 kr</td>
<td>-12,1%</td>
<td>106 969 kr</td>
</tr>
</tbody>
</table>

Figur 30 Prisförändring, Malmö

Befolkningsförändring Malmö

<table>
<thead>
<tr>
<th>År</th>
<th>Befolkning</th>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>264 642</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>269 716</td>
<td>5 074 1,92%</td>
</tr>
<tr>
<td>2009</td>
<td>276 442</td>
<td>6 726 2,49%</td>
</tr>
<tr>
<td>2010</td>
<td>281 095</td>
<td>4 653 1,68%</td>
</tr>
</tbody>
</table>

Figur 31 Befolkningsförändring, Malmö

Area och Befolkningstäthet Malmö

<table>
<thead>
<tr>
<th>År</th>
<th>Area (ha)</th>
<th>Förändring (%)</th>
<th>Befolkningstäthet inv/km²</th>
<th>Förändring (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>7 331</td>
<td></td>
<td>3 604</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>7 439</td>
<td>1,5%</td>
<td>3 618</td>
<td>0,4%</td>
</tr>
<tr>
<td>2009</td>
<td>7 583</td>
<td>1,9%</td>
<td>3 638</td>
<td>0,5%</td>
</tr>
<tr>
<td>2010</td>
<td>7 681</td>
<td>1,3%</td>
<td>3 651</td>
<td>0,4%</td>
</tr>
</tbody>
</table>

Figur 32 Area och befolkningstäthet, Malmö

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

6.6.3 Stor-Malmö

Figur 33 Hyresgradientförändring, Stor-Malmö

Nedan visas tabellerna för prisförändringen och befolkningsförändringen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolut</td>
<td>Procent</td>
<td>Absolut</td>
</tr>
<tr>
<td>0</td>
<td>155 099 kr</td>
<td>9,7%</td>
<td>114 210 kr</td>
</tr>
<tr>
<td>5</td>
<td>127 996 kr</td>
<td>9,0%</td>
<td>114 311 kr</td>
</tr>
<tr>
<td>10</td>
<td>100 894 kr</td>
<td>8,1%</td>
<td>114 413 kr</td>
</tr>
<tr>
<td>15</td>
<td>73 791 kr</td>
<td>7,0%</td>
<td>114 515 kr</td>
</tr>
<tr>
<td>20</td>
<td>46 689 kr</td>
<td>5,3%</td>
<td>114 616 kr</td>
</tr>
<tr>
<td>25</td>
<td>19 586 kr</td>
<td>2,8%</td>
<td>114 718 kr</td>
</tr>
<tr>
<td>30</td>
<td>7 517 kr</td>
<td>-1,5%</td>
<td>114 820 kr</td>
</tr>
<tr>
<td>35</td>
<td>34 619 kr</td>
<td>-10,3%</td>
<td>114 922 kr</td>
</tr>
<tr>
<td>40</td>
<td>61 722 kr</td>
<td>-40,2%</td>
<td>115 023 kr</td>
</tr>
</tbody>
</table>

Figur 34 Prisförändring, Stor-Malmö
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Befolkningsförändring Stor-Malmö

<table>
<thead>
<tr>
<th></th>
<th>Befolkning Absolut</th>
<th>Procent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>624 236</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>635 224</td>
<td>10 988</td>
</tr>
<tr>
<td>2009</td>
<td>647 292</td>
<td>12 068</td>
</tr>
<tr>
<td>2010</td>
<td>656 355</td>
<td>9 063</td>
</tr>
</tbody>
</table>

Figur 35 Befolkningsförändring, Stor-Malmö

6.6.4 Inkomstförändring

BNP ökningen 2009 till 2010 borde leda till en ökad lutning på hyresgradienten. Inom samtliga områden har lutningen varit relativt stabil.

Det är svårt att dra någon slutsats från effekten av inkomstförändringen. Det är många faktorer som gör analysen osäker. Det är få år som det finns data över och innan en effekt av inkomstförändring märks kan det ta lång tid då det handlar om människors beteende. Dessutom förklarar inte den monocentriska modellen entydigt vad som händer vid en inkomstförändring, eftersom det är flera andra faktorer som påverkar. I min analys har det dessutom varit en befolkningsökning med både areaökning och densitetsökning som följd vilket gör att effekterna inverkar på varandra.

6.7 Stadens storlek

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

<table>
<thead>
<tr>
<th>Stad</th>
<th>Areal hektar</th>
<th>Invånare</th>
<th>Inv/km²</th>
<th>Medelpris</th>
<th>Medianpris</th>
<th>Försäljningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malmö</td>
<td>7 681</td>
<td>280 415</td>
<td>3 651</td>
<td>1 210 334 kr</td>
<td>995 000 kr</td>
<td>12 379</td>
</tr>
<tr>
<td>Lund</td>
<td>2 575</td>
<td>82 800</td>
<td>3 215</td>
<td>1 441 390 kr</td>
<td>1 310 000 kr</td>
<td>4 263</td>
</tr>
<tr>
<td>Trelleborg</td>
<td>1 366</td>
<td>28 290</td>
<td>2 071</td>
<td>585 702 kr</td>
<td>570 000 kr</td>
<td>865</td>
</tr>
<tr>
<td>Eslöv</td>
<td>914</td>
<td>17 748</td>
<td>1 942</td>
<td>610 336 kr</td>
<td>525 000 kr</td>
<td>609</td>
</tr>
<tr>
<td>Staffanstorp</td>
<td>663</td>
<td>14 808</td>
<td>2 235</td>
<td>1 070 369 kr</td>
<td>875 000 kr</td>
<td>231</td>
</tr>
<tr>
<td>Höör</td>
<td>612</td>
<td>7 865</td>
<td>1 286</td>
<td>535 588 kr</td>
<td>560 000 kr</td>
<td>17</td>
</tr>
<tr>
<td>Svedala</td>
<td>489</td>
<td>10 627</td>
<td>2 174</td>
<td>756 575 kr</td>
<td>697 500 kr</td>
<td>228</td>
</tr>
<tr>
<td>Lomma</td>
<td>482</td>
<td>10 837</td>
<td>2 248</td>
<td>1 617 462 kr</td>
<td>1 350 000 kr</td>
<td>290</td>
</tr>
<tr>
<td>Skurup</td>
<td>477</td>
<td>7 565</td>
<td>1 587</td>
<td>564 143 kr</td>
<td>605 000 kr</td>
<td>42</td>
</tr>
<tr>
<td>Kävlinge</td>
<td>468</td>
<td>9 049</td>
<td>1 932</td>
<td>631 880 kr</td>
<td>575 000 kr</td>
<td>443</td>
</tr>
<tr>
<td>Vellinge</td>
<td>317</td>
<td>6 304</td>
<td>1 991</td>
<td>1 160 463 kr</td>
<td>1 002 500 kr</td>
<td>108</td>
</tr>
</tbody>
</table>

Figur 37 Tätorternas storlek och medelpris

6.8 Minskade transportkostnader

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

UTDATASAMMANFATTNING

<table>
<thead>
<tr>
<th>Regressionsstatistik</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipel-R</td>
<td>0,758</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-kvadrat</td>
<td>0,575</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justerad R-kvadrat</td>
<td>0,573</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardfel</td>
<td>413602,879</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observationer</td>
<td>2615,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>-893</td>
<td>50842</td>
<td>0,0</td>
<td>-100588</td>
<td>98802</td>
</tr>
<tr>
<td>Triangeln</td>
<td>15314</td>
<td>27166</td>
<td>0,6</td>
<td>0,573</td>
<td>68582</td>
</tr>
<tr>
<td>Boyta</td>
<td>27111</td>
<td>995</td>
<td>27,3</td>
<td>0,000</td>
<td>25161</td>
</tr>
<tr>
<td>Månadsavgift</td>
<td>-88</td>
<td>13</td>
<td>-6,8</td>
<td>0,000</td>
<td>-113</td>
</tr>
<tr>
<td>1 Rum</td>
<td>178446</td>
<td>31950</td>
<td>5,6</td>
<td>0,000</td>
<td>115796</td>
</tr>
<tr>
<td>3 rum</td>
<td>-87195</td>
<td>27121</td>
<td>-3,2</td>
<td>0,001</td>
<td>-140376</td>
</tr>
<tr>
<td>4 rum</td>
<td>-195208</td>
<td>46691</td>
<td>-4,2</td>
<td>0,000</td>
<td>-286763</td>
</tr>
<tr>
<td>>4 rum</td>
<td>-290089</td>
<td>83811</td>
<td>-3,5</td>
<td>0,001</td>
<td>-454432</td>
</tr>
<tr>
<td>Avstånd CBD</td>
<td>-142</td>
<td>6</td>
<td>-23,4</td>
<td>0,000</td>
<td>-154</td>
</tr>
</tbody>
</table>

Figur 38 Utdatasammanfattning, citytunnelns effekt för bostäder med avstånd mindre än 1km från station Triangeln 2008.

UTDATASAMMANFATTNING

<table>
<thead>
<tr>
<th>Regressionsstatistik</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipel-R</td>
<td>0,762</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-kvadrat</td>
<td>0,580</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justerad R-kvadrat</td>
<td>0,579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardfel</td>
<td>503241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observationer</td>
<td>2793</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-kvot</th>
<th>p-värde</th>
<th>Nedre 95%</th>
<th>Övre 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstant</td>
<td>604843</td>
<td>47366</td>
<td>12,8</td>
<td>0,000</td>
<td>511967</td>
</tr>
<tr>
<td>Triangeln</td>
<td>-9973</td>
<td>29799</td>
<td>-0,3</td>
<td>0,738</td>
<td>68402</td>
</tr>
<tr>
<td>Boyta</td>
<td>26024</td>
<td>922</td>
<td>28,2</td>
<td>0,000</td>
<td>24216</td>
</tr>
<tr>
<td>Manavg</td>
<td>-185</td>
<td>13</td>
<td>-14,5</td>
<td>0,000</td>
<td>-210</td>
</tr>
<tr>
<td>1 Rum</td>
<td>-18198</td>
<td>32093</td>
<td>-0,6</td>
<td>0,571</td>
<td>-81127</td>
</tr>
<tr>
<td>3 rum</td>
<td>32542</td>
<td>28150</td>
<td>1,2</td>
<td>0,248</td>
<td>-22654</td>
</tr>
<tr>
<td>4 rum</td>
<td>201989</td>
<td>47544</td>
<td>4,2</td>
<td>0,000</td>
<td>108764</td>
</tr>
<tr>
<td>>4 rum</td>
<td>147516</td>
<td>81775</td>
<td>1,8</td>
<td>0,071</td>
<td>-12830</td>
</tr>
<tr>
<td>Avstånd CBD</td>
<td>-191</td>
<td>7</td>
<td>-27,0</td>
<td>0,000</td>
<td>-205</td>
</tr>
</tbody>
</table>

Figur 39 Utdatasammanfattning, citytunnelns effekt för bostäder med avstånd mindre än 1km från station Triangeln 2011.

Den nya variabeln visar sig ej vara signifikant för något år. Detta betyder att det inte går att säga att bostäder i närheten av station Triangeln har haft en annan
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

prisutveckling än övriga bostäder i Malmö stad. En viss förklaring kan ligga i konstruktionen av den hedoniska modellen. Den nya variabeln ”Triangeln” kan förmodligen samvariera med ”Avstånd CBD”. Om det skulle finnas en effekt av prisförändring för bostäderna vid Triangeln kan denna effekt alltså fångas upp av avståndet till CBD.
7 Diskussion och slutsats

I följande avsnitt diskuteras resultaten från analyserna och möjlig tillämpning av dessa. Dessutom presenteras slutsatsen av detta arbete.

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Vid de flesta värderingssituationer kan den monocentriska modellen troligen ej förbättra värderingen. Däremot finns det andra tillämplingsområden som kunskap från modellen kan användas på. Planläggning av nya bostadsområden är en sådan situation. För många aktörer är det då viktigt att göra bra uppskattningar av de kommande bostadspriserna i det nya området. Även vid bedömningar av nya infrastrukturprojekt kan modellen vara användbar. Speciellt för fastighetsbolag vid prognostisering av framtida bostadsprisförändringar.

Sammanfattningsvis kan nämnas att det finns tydliga samband mellan bostadspriserna inom ett område och avståndet till centrum i samma områden. Det är väldigt svårt att med hjälp av den monocentriska stadsmodellen prognostisera prisförändringar. Modellen är dock ett bra verktyg som kan komplettera de metoder som redan finns idag.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
8 Förslag till framtida forskning

Under arbetets gång har det uppkommit flera idéer och frågeställningar som skulle vara intressanta att testa. Dessa har inte rymts inom ramen för detta examensarbete och jag har därför fått lämna dem åt sidan. Nedan presenterar jag dessa idéer för att ge inspiration till framtida examensarbete eller annan forskning.

En annan inriktning är att gå djupare in på hur prisstrukturen ser ut i städer och regioner. Det skulle gå att göra fler avancerade analyser och försöka förklara priserna med hjälp av avståndet till vissa punkter. Det vore möjligt att utforma en modell där bostadspriserna förklaras av avståndet till olika centrum, affärer och rekreationsområden.

Ett tredje förslag är att undersöka hur mycket människor värdesätter tiden och hur detta förändrats genom åren. Detta kan göras med hjälp av att studera bostadspriser och hur dessa förhållas sig beroende på tidsavstånd till pendlingsorter.

Med hjälp av liknande hedoniska prismodeller som jag har satt upp, skulle det vara möjligt att hitta undervärderade områden genom att titta på residualerna i regressionsanalysen. Alltså områden som har priser som är lägre än vad de borde ha enligt modellen. Dessa områden skulle därmed ha en oförverkligad potential.

Även det syfte som jag har arbetat utifrån i detta arbete skulle kunna angripas på ett annorlunda sätt. Med tillgång till data över längre tidsperiod skulle resultaten bli mer tillförlitliga och samband kan bli lättare att urskilja.
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Litteraturförteckning

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

86
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Statistikdatabasen. Hämtat från Statistiska Centralbyrån:
http://www.ssd.scb.se/databaser/makro/start.asp den 19 1 2012

Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

Figurlista

FIGUR 1 Sektion över bostadspriset i den monocentriska staden (Geltner, Miller, Clayton, & Echholtz, 2007, s. 68) .. 23
FIGUR 2 Effekten av befolkningssökning med konstant transportkostnad och bostadsdensitet (Geltner, Miller, Clayton, & Echholtz, 2007, s. 69) .. 25
FIGUR 3 Effekten av befolkningssökning med konstant area och konstruktionskostnad. (Geltner, Miller, Clayton, & Echholtz, 2007, s. 71) .. 27
FIGUR 4 Effekten av minskade transportkostnader med ökat köp av mark. (Geltner, Miller, Clayton, & Echholtz, 2007, s. 73) .. 28
FIGUR 5 Effekten av minskade transportkostnader med oförändrad densitet. (Geltner, Miller, Clayton, & Echholtz, 2007, s. 73) .. 29
FIGUR 6 Karta över Stor-Malmö med ingående kommuner markerade i rött. Malmö och Lund tätort markerad med i svart .. 40
FIGUR 7 Möjliga CBD i Malmö. Från norr till söder; centralstationen, Stortorget, Gustav Adolfs torg .. 41
FIGUR 8 Malmös norra kommungränss utmarkerad, den stora cirkeln representerar Malmös yta med centrum i den mindre cirkeln .. 42
FIGUR 9 Lund stad med sydvästra kommungränsen markerad. De två små cirkeln visar möjliga CBD; Stortorget i söder och Ideon i norr .. 45
FIGUR 10 Landareal och folkmängd för den största tätorten i respektive kommun i Stor-Malmö. (SCB, Tätorternas landareal) .. 46
FIGUR 11 Befolkning i Lund tätort. (SCB, Församlingsfolkmängd) .. 47
FIGUR 12 Befolkning i Malmö tätort. (SCB, Församlingsfolkmängd) .. 47
FIGUR 13 Befolkning i Stor-Malmö. (SCB, Församlingsfolkmängd) .. 48
FIGUR 14 Försäljningarna i Stor-Malmö .. 49
FIGUR 15 Tidsåtgång från respektive församling inom Stor-Malmö till Malmö CBD. (Reeseplanaren), (Vägbeskrivning) .. 54
FIGUR 16 Utdatasetammanfattning för grundläggande hedonisk prissättningssmodell över Lund. .. 57
FIGUR 17 Utdatasetammanfattning för grundläggande hedonisk prissättningssmodell över Malmö. .. 59
FIGUR 18 Utdatasetammanfattning för grundläggande hedonisk prissättningssmodell över Stor-Malmö.. 60
FIGUR 19 Utdatasetammanfattning för hedonisk prissättningssmodell med kortaste avståndet till Malmö/Lund som avståndsvariabel .. 62
FIGUR 20 Utdatasetammanfattning för regressionsanalys för Stor-Malmö med tidsavstånd som avståndsvariabel .. 63
FIGUR 21 Hyresgradient, Lund .. 65
FIGUR 22 Hyresgradient, Malmö .. 65
FIGUR 23 Hyresgradient, Stor-Malmö .. 66
FIGUR 24 Hyresgradient, Stor-Malmö med avståndet till CBD i minuter .. 67
FIGUR 25 Hyresgradient utförd, Lund .. 68
FIGUR 26 Prisförändring, Lund .. 69
FIGUR 27 Befolkningssförändring, Lund .. 69
FIGUR 28 Area och befolkningstäthet, Lund .. 70
FIGUR 29 Hyresgradientförändring, Malmö .. 71
FIGUR 30 Prisförändring, Malmö .. 72
FIGUR 31 Befolkningssförändring, Malmö .. 72
Bostadspriserna och läget – tillämpning av den monocentriska stadsmodellen

FIGUR 32 AREA OCH BEFOLKNINGSTÄTHET, Malmö... 72
FIGUR 33 HYRESGRADIENTFÖRÄNDRING, STOR-Malmö ... 73
FIGUR 34 PRISFÖRÄNDRING, STOR-Malmö.. 73
FIGUR 35 BEFOLKNINGSFÖRÄNDRING, STOR-Malmö ... 74
FIGUR 36 REAL BNP (SCB, REAL BNP) .. 75
FIGUR 37 TÄTORTERNAS STORLEK OCH MEDELPRIS.. 76
FIGUR 38 UTDATASAMMANFATTNING, CITYTUNNELNS EFFEKT FÖR BOSTÄDER MED AVSTÅND MINDRE ÅN 1KM FRÅN STATION TRIANGELN 2008... 77
FIGUR 39 UTDATASAMMANFATTNING, CITYTUNNELNS EFFEKT FÖR BOSTÄDER MED AVSTÅND MINDRE ÅN 1KM FRÅN STATION TRIANGELN 2011... 77